Estudos incluem catalisadores, células solares, ímãs e lasers; terras raras são abundantes no País, mas custo tecnológico da separação de minérios é obstáculo para produção nacional
As terras raras são um conjunto de elementos químicos, normalmente encontrados na natureza misturados a minérios, de difícil extração – daí o nome -, mas com características peculiares, como magnetismo intenso e absorção e emissão de luz. Essas propriedades especiais fazem com que sejam usadas numa infinidade de aplicações tecnológicas, como lâmpadas de LED, lasers, superímãs presentes nos discos rígidos de computadores e motores de carros elétricos, e na separação de componentes do petróleo. Atualmente, o Brasil tem a segunda maior reserva mundial conhecida de terras raras, porém essa riqueza não é explorada, devido ao custo da tecnologia de extração e separação, o que obriga o País a importar esses elementos para usar como matéria-prima nas indústrias, principalmente da China, maior produtor do mundo.
Na USP, grupos de pesquisa realizam estudos com terras raras, obtendo resultados promissores, como um método de separação não poluente, baseado em nanotecnologia, além de aplicações em iluminação, lasers, produção de aço, células solares, filtros de raios ultravioleta e catalisadores automotivos. A Universidade também coordena um Instituto Nacional de Ciência e Tecnologia (INCT) voltando ao domínio de todas as etapas da cadeia produtiva da fabricação dos superímãs de terras raras, da mina ao ímã, e no momento colabora com a instalação de uma fábrica de ímãs em Minas Gerais.
As propriedades de emissão de luz das terras raras também são pesquisadas para aplicação em células solares, ou dispositivos fotovoltaicos, que convertem luz solar em energia elétrica, em um estudo realizado no Ipen, que atua na pós-graduação em parceria com a USP. “O objetivo é desenvolver e modificar materiais com luminescência persistente, isto é, onde ocorre emissão de minutos até horas após cessada a excitação da fonte de luz, com emissão visível, especificamente na região verde, análoga ao máximo de emissão do espectro solar, usando ainda a faixa ultravioleta (UV) para conversão de energia”, relata Leonardo Francisco, pesquisador responsável pelo trabalho. “O material usado é uma matriz de aluminato de estrôncio combinada com európio e disprósio, duas terras raras. O európio emite luz na região do verde e aumenta a absorção de luz UV, ao mesmo tempo em que o disprósio atua como ‘armadilha’ para o armazenamento de energia no material, o que origina a luminescência persistente.” De acordo com o pesquisador, o material já é fabricado em grande escala, porém é necessário produzi-lo em forma de nanopartículas, mais adequadas às dimensões das células solares. A pesquisa, descrita em dissertação de mestrado orientada por Maria Claudia França da Cunha Felinto, do Centro de Química e Meio Ambiente (CQMA) do Ipen, defendida em 1º de março, é relatada em artigo do Journal of Alloys and Compounds, publicado em 3 de junho. O estudo teve a colaboração do IQ, do Laboratório Nacional de Luz Síncrotron (LNLS) e da UFPE, além do apoio financeiro da Capes, CNPq, Fapesp e Comissão Nacional de Energia Nuclear (CNEN).
Também no Ipen, o uso de terras raras foi testado em tratamentos superficiais de metais, comumente empregados na indústria para a proteção contra o desgaste, a corrosão e a oxidação. “Foram experimentados ítrio, lantânio, neodímio, samário e gadolínio, na forma de óxidos e nitratos, na boretação do aço, um processo que endurece a superfície do metal com a adição de boro, realizada em fornos a temperaturas entre 900 e 1000 graus Celsius (°C)”, diz o pesquisador Cesar Roberto Kiral Santaella, autor do trabalho, descrito em tese de doutorado defendida no Ipen em 16 de junho de 2020, orientada por Marina Fuser Pillis, do Centro de Ciência e Tecnologia de Materiais (CCTM) do Ipen. “Misturados aos reagentes do processo, as terras raras aceleraram a difusão do boro, resultando em um aumento da espessura das camadas superficiais formadas, o que abre a possibilidade para a redução do tempo de tratamento do metal e, consequentemente, do consumo de energia.” A pesquisa teve a colaboração do CQMA, das Universidades Federais do Grande ABC (UFABC) e do Rio Grande do Sul (UFRGS), e do Leibniz Institut, em Bremen (Alemanha).
Outra aplicação das terras raras é em catalisadores automotivos, que filtram o carbono e o material particulado (fuligem) produzidos pelos veículos, reduzindo a emissão de poluentes. Na FFLCRP, um estudo do Laboratório de Terras Raras testou o uso de um filtro de material cerâmico (cordierita), já empregado em escapamentos, impregnado com um composto de terras raras, o óxido de cério (ceria). “Os escapamentos de veículos movidos a diesel e biodiesel eliminam grande quantidade de fuligem, que gera diversos problemas à saúde do ser humano e tem sido alvo de medidas restritivas do Conselho Nacional do Meio Ambiente (Conama) para o ano de 2022”, diz Viviane de Carvalho Gomes, que realizou a pesquisa, com orientação do professor Osvaldo Antonio Serra. “As terras raras promovem a combustão completa do material particulado sob temperatura inferior à da combustão da fuligem. Quando sozinho, o carbono elementar se decompõe a 600°C, e com a presença destes catalisadores esta temperatura caiu para 370°C.” O trabalho, que teve a colaboração do IFSC, da UFPE, da Universidade Federal do Rio de Janeiro (UFRJ) e da Warwick University (Reino Unido), foi apresentado no 1° Congresso Fronteiras da Nanociência e Nanotecnologia: Avanços, realizado por jovens cientistas brasileiros no final de outubro. Atualmente, o grupo da FFCLRP está escrevendo artigo para futura publicação. Viviane comenta que para a técnica chegar ao mercado, é necessária a finalização dos testes em motores estacionários de sistemas a diesel e biodiesel, além da parceria com a iniciativa privada para a elaboração de testes em sistemas móveis a diesel, isto é, veículos que circulam com os combustíveis.”