Cientistas da Universidade Federal de São Paulo (Unifesp) conseguiram, pela primeira vez no Brasil, sequenciar diretamente o RNA do Sars-CoV-2, o vírus causador da Covid-19. Os resultados da pesquisa, apoiada pela Fapesp, foram divulgados em artigo ainda sem revisão por pares na plataforma bioRxiv.
Segundo os autores, a técnica permite mapear o genoma viral com aproximadamente 25 vezes mais resolução do que os métodos convencionais de sequenciamento. Desse modo, é possível ter uma noção mais precisa da biologia do patógeno e de como seu genoma está evoluindo.
“É muito promissor, pois nos permite entender, por exemplo, por que há cepas mais virulentas ou mais capazes de escapar de nosso sistema imune”, diz à Agência Fapesp Marcelo Briones, pesquisador do Centro de Bioinformática Médica da Escola Paulista de Medicina (EPM-Unifesp) e coordenador da investigação.
Técnica
Como explica Briones, o Sars-CoV-2 é um vírus de RNA de fita simples, ou seja, seu material genético é composto por um único filamento de nucleotídeos, cujas bases são guanina, adenosina, citosina e uracila.
Para sequenciá-lo pelo método convencional, recorre-se a uma técnica conhecida como RT-PCR (polimerase por transcriptase reversa, na sigla em inglês) para converter as moléculas de RNA em DNA complementar (cDNA) —lembrando que a molécula de DNA é formada por dois filamentos de nucleotídeos.
Ou seja, faz-se uma cópia complementar da fita de RNA do vírus. Em seguida, essas moléculas de cDNA são amplificadas (geram-se bilhões de clones) e sequenciadas. Entre as vantagens da estratégia estão a rapidez e a possibilidade de fazer o sequenciamento mesmo em amostras com pouquíssimo material genético.
“O sequenciamento convencional desse vírus é como tentar identificar uma pessoa olhando apenas para sua sombra. Já com o método utilizado em nosso estudo podemos olhar diretamente para o RNA viral como ele é encontrado in vivo. É muito mais fidedigno”, afirma o pesquisador.
Carla Braconi, professora do Departamento de Microbiologia, Imunologia e Parasitologia da EPM-Unifesp e coautora do artigo, conta que a pesquisa foi feita com uma das primeiras linhagens do Sars-CoV-2 isoladas no Brasil, no início de 2020.
“Nós recebemos o isolado viral do professor José Luiz Proença-Módena [da Universidade Estadual de Campinas] e cultivamos o patógeno em células vero [linhagem celular de rim de macaco altamente suscetível ao Sars-CoV-2]. Depois fizemos a extração do RNA viral e sequenciamos com uma tecnologia portátil chamada MinION, da Oxford Nanopore Technologies”, conta.
Sequenciado
De acordo com Briones, o RNA é sequenciado exatamente como sai da célula vero, sem passar por RT-PCR ou amplificação. “Apenas ‘penduramos’ um adaptador na ponta da molécula e uma fita de cDNA para a fita de RNA ficar esticada. E então só o RNA vai passando, base por base, no sequenciador. E cada tipo de base [citosina, guanina, adenosina ou uracila] e suas modificações, tais como metilação, interrompem o fluxo elétrico do aparelho com um padrão diferente e é assim que identificamos qual é qual.”
O processo produz um gráfico que se assemelha ao de um eletroencefalograma, que depois é interpretado com ferramentas de bioinformática. A sequência final gerada pode então ser comparada com os modelos de referência.
“Inicialmente, tem-se a impressão de que a sequência obtida tem um monte de erros. Mas, na verdade, são as bases modificadas do RNA. E parte dessas modificações passa despercebida pelo sequenciamento convencional”, diz o pesquisador.
A análise, feita pelo pós-doutorando João Campos, teve como foco o padrão de metilação do RNA viral. Ou seja, buscou-se olhar —entre as quase 30 mil bases que formam o RNA fita simples— quais receberam a adição de um radical metil (CH3).
“Esse tipo de modificação bioquímica no RNA é muito importante para o funcionamento adequado de vírus como o Sars-CoV-2, assim como de alguns arbovírus [entre eles dengue e zika] que integram o grupo 4 no sistema de classificação de Baltimore, composto por genomas virais com RNA de fita simples e polaridade positiva”, conta Braconi.
Autores
Os autores explicam que os RNAs em geral têm cerca de cem bases modificadas que são essenciais para as suas funções biológicas. “Depois que o Sars-CoV-2 entra na célula e a ‘obriga’ a fazer cópias de seu material genético, vem uma enzima que faz a metilação desses RNAs e essas modificações passam a ter função. São parte da informação que o vírus precisa para sobreviver. Sem analisar esse padrão de metilação, portanto, não é possível conhecer a riqueza genética real do Sars-CoV-2”, diz Briones.
Uma base frequentemente modificada no RNA do Sars-CoV-2 é a N6-metiladenosina (m6A), que está implicada na evasão da resposta imune. “Essa modificação permite ao vírus escapar do sistema de ativação dos interferons [proteínas produzidas por células de defesa com ação antiviral]. É, portanto, alvo potencial para fármacos e já há estudos nesse sentido”, conta Briones.
Se fosse possível criar um medicamento capaz de bloquear totalmente o processo de metilação do RNA viral, diz o pesquisador, o novo coronavírus sumiria das células e seria o fim da Covid-19. “O problema é que, se bloquearmos demais a metilação, as células hospedeiras também acabam morrendo, pois as enzimas que metilam o RNA viral são as mesmas que metilam os RNAs das células. Então precisa ser algo com ação muito específica.”