Notícia

Long Room (EUA)

Software helps industry to design lighter, more efficient parts

Publicado em 04 agosto 2017

Computer-aided engineering (CAE) systems help manufacturers to design parts with the ideal topology (inner and outer shape and structure) to withstand the conditions under which they will operate, such as specific temperature and pressure conditions, vibrations, and various stresses and strains, and to produce them with as little raw material as possible. In sum, CAE enables industrial design software to optimize part topology.

By deploying topology optimization software, manufacturers virtually sculpt lighter parts using a given amount of raw material and monitoring their strength.

Attributes - Function - Design - Parameters - Software

These attributes are a function of the design. "You input parameters into the software with the properties and other characteristics the part needs to have, and the program shows the design path that has to be followed in order to achieve your goals," says mechatronic engineer Ricardo Doll Lahuerta, principal investigator for a research project that is promoting a significant quality enhancement in this type of tool.

Recently launched, and with several upgrades in progress, Virtual.Pyxis has already been licensed to advanced research departments of major multinationals and the Massachusetts Institute of Technology (MIT) in the United States, one of the world's leading research and education institutions.

Tool - Engineers - Parts - Time - Development

The tool enables engineers to design stronger and more versatile parts while shortening lead time and development cost.

This type of software typically requires information on the conditions under which the part will operate, such as stress, compression, vibration and temperature, as well as other design constraints, including maximum flexibility and deformation. Details of the manufacturing process to be used, such as polymer injection, casting or 3-D printing, are also key inputs for CAE programs.

Virtual - Pyxis - Next-generation - Algorithm - Capacity

Virtual.Pyxis is distinguished mainly by its next-generation algorithm, which gives it the capacity to process a far larger number of variables and constraints for considerably less cost than commercially available programs.

"Our algorithm can process more variables without the need for...

(Excerpt) Read more at: phys.org