Notícia

Jornal Floripa

Sensor portátil permite auto teste de urina para detectar marcadores de doenças como câncer, gota e Parkinson (80 notícias)

Publicado em 01 de abril de 2024

Um sensor desenvolvido por pesquisadores das universidades de São Paulo (USP) e Federal de Viçosa (UFV) pode facilitar a vida de pacientes que necessitam monitorar com frequência biomarcadores na urina – por exemplo, aqueles que sofrem de gota e têm de controlar os níveis de ácido úrico. O dispositivo é capaz de fornecer essas informações de forma rápida e em casa, bastando conectá-lo ao smartphone, mostra estudo publicado no Chemical Engineering Journal.

Com custo de produção inferior a R$ 0,50, o equipamento contém uma tira de sensor flexível com eletrodos que, integrada a um analisador portátil, mede um amplo espectro de biomarcadores moleculares em três minutos, após receber gotas de urina humana, sem a necessidade de passar a amostra por etapas prévias de pré-tratamento. A análise é exibida em um dispositivo móvel (smartphone, laptop ou tablet) por meio de comunicação sem fio (bluetooth).

Os testes feitos durante o estudo, que contou com apoio da FAPESP (projetos 20/09587-8, 23/07686-7, 19/01777-5, 22/02164-0, 16/01919-6 e 23/00850-6), analisaram níveis de ácido úrico e dopamina na urina. O primeiro tem sido considerado um biomarcador para várias doenças, incluindo hiperuricemia, síndrome de Fanconi, gota, câncer, síndrome de Lesch-Nyhan e disfunção renal, além de estresse físico e riscos elevados de diabetes tipo 2 com alta gravidade e complicações.

Já a dopamina é um importante neuromodulador com funções vitais nos sistemas nervoso central, renal, hormonal e cardiovascular. Níveis anormais podem indicar distúrbios neurológicos e psiquiátricos, incluindo esquizofrenia, depressão, vício, doença de Alzheimer e Parkinson.

O desempenho analítico do sensor foi considerado comparável ao método padrão-ouro (kit usado em laboratórios de análises clínicas).

“A integração de sensores químicos eletrônicos com dispositivos portáteis permite monitorar continuamente e remotamente os principais sinais vitais, níveis de metabólitos e biomarcadores dos pacientes em tempo real para apoiar a saúde e o bem-estar”, diz Paulo Augusto Raymundo-Pereira https://bv.fapesp.br/pt/pesquisador/79299/paulo-augusto-raymundo-pereira/, pesquisador do Instituto de Física de São Carlos (IFSC-USP). “A ideia é que nosso dispositivo seja utilizado para fornecer informações sobre um estado de saúde individual em níveis moleculares, abrindo caminho para uma ampla gama de monitoramento personalizado, análise descentralizada, aplicações diagnósticas e terapêuticas, potencial que ficou claro com a popularização dos auto testes de COVID-19 durante a pandemia. ”

Foco em sustentabilidade

Outro destaque importante do novo sensor é que, ao contrário de dispositivos eletrônicos portáteis de detecção já existentes, feitos de plásticos convencionais à base de petróleo, ele foi desenvolvido com filmes biodegradáveis de poliácido lático (PLA), contribuindo para atender aos requisitos dos Objetivos de Desenvolvimento Sustentável (ODS) , estabelecidos pela Organização das Nações Unidas (ONU) na Agenda 2030.

Nos Estados Unidos, o material já tem aprovação da Food and Drug Administration (FDA, agência de vigilância sanitária norte-americana) para aplicações biomédicas, incluindo stents , placas e parafusos ortopédicos, suturas absorvíveis, veículos de administração de medicamentos, filmes de prevenção de adesão, engenharia de tecidos, dispositivos implantáveis e contato direto com fluidos biológicos.

“Até onde sabemos, o bioplástico de PLA ainda não tinha sido usado como substrato ou suporte para fabricação de sensores e biossensores descartáveis. Nosso estudo demonstrou o primeiro exemplo de uma tira de sensor sustentável integrada com analisador sem fio portátil para auto teste rápido”, afirma Raymundo-Pereira.

Confira o artigo “Flexible and sustainable printed sensor strips for on-site, fast decentralized self-testing of urinary biomarkers integrated with a portable wireless analyzer”!

Fonte:

Julia Moióli – Agência FAPESP