Notícia

Casa de Notícias

Primeiro experimento realizado no Sirius busca desenvolver fármaco para COVID-19

Publicado em 20 outubro 2020

Por Maria Fernanda Ziegler* | Agência FAPESP

Por meio de um potente feixe de luz síncrotron foi possível determinar, em três dias, a estrutura de mais de 200 cristais de duas proteínas do novo coronavírus (SARS-CoV-2).

A investigação realizada por pesquisadores do Instituto de Física de São Carlos, da Universidade de São de Paulo (IF-USP), tem importância não só pela temática – essencial para o desenvolvimento de um possível fármaco contra a COVID-19 –, mas também pelo seu caráter de ineditismo.

O experimento, realizado por Aline Nakamura e André Godoy , inaugurou a primeira estação de pesquisa do Sirius – o acelerador de partículas que está sendo finalizado no Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), a mais complexa infraestrutura científica do país.

“Tivemos a oportunidade de ser os primeiros a experimentar a linha Manacá, de cristalografia de proteínas, o que deu uma agilidade enorme para o nosso estudo. Com a pandemia as fontes de luz síncrotron existentes no mundo pararam, mantendo apenas os experimentos relacionados à COVID-19. No Sirius, não foi diferente. A despeito de ainda estar em fase de comissionamento, também se abriu a possibilidade de utilizá-lo pela primeira vez com estudo relacionado ao novo coronavírus”, diz Glaucius Oliva , coordenador do Centro de Pesquisa e Inovação em Biodiversidade e Fármacos ( CIBFar ) e que lidera a pesquisa sobre a descoberta de fármacos antivirais para COVID-19.

O CIBFar é um Centro de Pesquisa, Inovação e Difusão ( CEPID ) apoiado pela FAPESP no Instituto de Física de São Carlos da Universidade de São Paulo (IFSC-USP). Além da parceria do CNPEM, o projeto que busca novos fármacos para COVID-19, apoiado pela FAPESP , reúne também pesquisadores do Instituto de Ciências Biomédicas (ICB-USP), dos Institutos de Química de São Carlos (IQSC-USP), da Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), da Universidade Estadual Paulista (Unesp) e da Universidade Estadual de Campinas (Unicamp).

“O que conseguíamos fazer em horas no antigo acelerador de elétrons do CNPEM, agora fazemos em minutos”, celebra Godoy, pesquisador com dez anos de experiência em análises realizadas em outras fontes de luz síncrotrons espalhadas pelo mundo.

O experimento de estreia durou três dias, mas a expectativa é que, no futuro, a análise no Sirius se torne ainda mais eficiente. “Como ele ainda está em comissionamento, não está com toda a sua potência. Já tem raios X saindo da janela, atingindo os cristais congelados em temperaturas criogênicas, e também um detector para medir a difração da luz síncrotron pelos cristais, e com isso obter a estrutura das proteínas que os constituem”, explica Oliva.

No entanto, de acordo com o pesquisador, faltam ainda os braços robóticos necessários para posicionar os cristais, por exemplo. “Por isso, para mudar os cristais analisados era preciso fazê-lo manualmente. Durante o período de comissionamento de todo o anel síncrotron, também é inviável usar a potência máxima. Mesmo assim, foi muito eficiente e os testes foram muito valiosos”, diz Oliva, que também foi o primeiro pesquisador a testar o UVX, fonte de luz síncrotron de segunda geração projetada e construída por brasileiros na década de 1990 e que foi agora substituída pelo Sirius.

O acelerador de elétrons de quarta geração gera um tipo de luz capaz de revelar a estrutura atômica (organização dos átomos) de materiais orgânicos e inorgânicos. Oliva explica que o equipamento possui tecnologias avançadas de construção de ímãs e sistemas modernos para obtenção de vácuo de alta qualidade, bem como sistemas de controle dos feixes de elétrons que permitem que as partículas subatômicas cheguem a velocidades próximas da luz e, assim, emitir luz síncrotron ao terem suas trajetórias alteradas.