Além da fuligem, outros poluentes presentes na atmosfera – como monóxido de carbono, dióxido de carbono, ozônio, óxido nitroso e metano – interagiram com as nuvens trazidas pela frente fria e potencializaram a formação da neblina escura
Dois sistemas que permitem o monitoramento de poluentes atmosféricos – desenvolvidos nas últimas duas décadas com apoio da Fapesp – estão ajudando cientistas a entender fenômenos raros observados na cidade de São Paulo na última segunda-feira (19/08): o escurecimento repentino do céu no meio da tarde e a chuva acinzentada observada logo depois em algumas partes da Região Metropolitana.
Ainda no domingo (18/08), uma intensa pluma de material particulado com mais de 3 mil metros de altitude foi detectada por uma equipe do Instituto de Pesquisas Energéticas e Nucleares (Ipen) por meio do sistema Lidar, do Centro de Lasers e Aplicações (CLA). Posteriormente, com auxílio de imagens de satélites da Nasa – a agência espacial norte-americana – e de um modelo que prevê a trajetória percorrida por massas de ar, os pesquisadores concluíram se tratar de partículas provenientes de queimadas ocorridas nas regiões Centro-Oeste e Norte, entre Paraguai e Mato Grosso, abrangendo trechos da Bolívia, Mato Grosso do Sul e Rondônia.
Acrônimo para light detection and ranging (detecção de luz e medida de distância), o Lidar é um radar de laser que permite o sensoriamento remoto ativo da atmosfera para a detecção de poluentes. Vem sendo desenvolvido desde 1998 por Eduardo Landulfo, por meio de vários projetos financiados pela Fapesp.
“O sistema ilumina o céu e as partículas presentes na atmosfera refletem a luz, que captamos com um telescópio. Ao analisar esse sinal, conseguimos identificar o tipo de partícula e a distância da superfície em que ela se encontra”, explicou Landulfo.
Segundo o pesquisador, a pluma de poluição começou a pairar sobre a Região Metropolitana de São Paulo entre 4 e 5 horas da tarde de domingo – resultado de queimadas que ocorreram muito provavelmente de quatro a sete dias antes.
Como explicou Saulo Ribeiro de Freitas, do Instituto Nacional de Pesquisas Espaciais (Inpe), a massa de ar poluído gerada pelas queimadas nas regiões Norte e Centro-Oeste geralmente é empurrada a 5 mil metros de altitude por ventos que sopram do Atlântico para o Pacífico (de leste para oeste), até esbarrar na Cordilheira dos Andes. A fumaça começa então a se acumular sobre o leste do Amazonas, Acre, Venezuela, Colômbia e Paraguai – até que o chamado sistema anticiclone, com ventos que circulam a 3 mil metros de altitude no sentido anti-horário, começa a transportar a massa poluída na direção sul, margeando os Andes.
“O que ocorreu no início desta semana foi a convergência dessa massa de ar poluído que vinha do norte com uma frente fria vinda do sul. Os ventos convergiram e fizeram o rio de fumaça se curvar em direção à região Sudeste. Além da fuligem, outros poluentes presentes na atmosfera – como monóxido de carbono, dióxido de carbono, ozônio, óxido nitroso e metano – interagiram com as nuvens trazidas pela frente fria e potencializaram a formação de smog [termo em inglês que representa a mistura entre fumaça e neblina]”, disse.
O transporte atmosférico de emissões de queimada sobre a América do Sul vem sendo monitorado no Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) do Inpe desde 2003, por meio do sistema CATT-BRAMS (Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modelling System), desenvolvido por Freitas em colaboração com Karla Longo e Luiz Flávio Rodrigues (ambos do Inpe) e com apoio da Fapesp.