Notícia

Jornal Joseense News

Pesquisadores criam métodos estatísticos para prever fraudes em operações financeiras

Publicado em 28 outubro 2015

Por Elton Alisson, da Agência FAPESP

A fim de auxiliar empresas a diminuír o risco de sofrer esse tipo de golpe, pesquisadores do Centro de Ciências Matemáticas Aplicadas à Indústria (CeMEAI) – um dos Centros de Pesquisa, Inovação e Difusão (CEPIDs) apoiados pela FAPESP – estão desenvolvendo modelos estatísticos para detecção e prevenção de fraudes em operações financeiras.

Alguns dos modelos estatísticos já estão sendo usados por bancos, seguradoras e empresas atuantes no segmento de comércio eletrônico (e-commerce).

“A fraude é um fenômento muito volátil que ocorre muito rapidamente. Sem uma estrutura adequada para detectá-la de forma eficiente, o fraudador entra na base de dados de uma empresa ou instituição financeira, permanece nela por alguns segundos, comete a fraude e sai sem ser percebido”, disse Francisco Louzada Neto, coordenador de transferência de tecnologia do CeMEAI, à Agência FAPESP.

“A ideia dos modelos estatísticos que estamos desenvolvendo é acompanhar todos os passos dos clientes, a partir do momento em que ingressam na base de dados de uma empresa, e detectar quais possíveis operações que estão sendo realizadas têm alta probabilidade de serem fraudulentas”, explicou o pesquisador, que é professor do Instituto de Ciências Matemáticas e de Computação (ICMC) da Universidade de São Paulo (USP), campus de São Carlos, onde o CeMEAI está sediado.

O método desenvolvido pelos pesquisadores combina diferentes modelos estatísticos que interrelacionam diversas variáveis, como idade, sexo, estado civil e localidade do cliente, além do tipo e o valor da operação, entre outras informações, para prever a ocorrência de uma fraude.

Os diferentes modelos estatísticos apresentam uma capacidade preditiva variável de estabelecer interrelações entre essas diferentes variáveis e inferir a possibilidade de fraude em uma operação.

A combinação deles possibilita aumentar a capacidade de previsão de ocorrência de fraudes, explicou Louzada.

“Nós comparamos os modelos estatísticos usuais, propomos novos com maior capacidade de detectar fraudes e combinamos eles com o objetivo de aumentar a capacidade preditiva da modelagem”, afirmou.

Para estimar a probabilidade de fraude, o método desenvolvido pelos pesquisadores utiliza dados históricos de operações normais e fraudulentas, além de informações de clientes já cadastrados na base de dados da empresa.

Com base nesse conjunto de informações, o método estatístico faz comparações do perfil de um novo cliente que acabou de ingressar no site da empresa e da operação que está realizando com dados históricos de fraude e extrai a probabilidade da operação em andamento ser fraudulenta.

“É difícil dizer se uma determinada operação é ou não fraudulenta. Por isso, o método que desenvolvemos fornece uma probabilidade de fraudulência”, explicou Louzada.

Além de informações objetivas provenientes dos dados dos clientes e das operações, o método também pode incorporar informações fornecidas com base na percepção subjetiva de analistas de operações da própria empresa, disse o pesquisador.

“Se tiver dentro da empresa especialistas que, de alguma forma, trabalham na análise de operações, é possível acoplar ao método que desenvolvemos a percepção subjetiva deles sobre determinados tipos de fraude”, afirmou.

Após ser desenvolvido sob demanda e testado e avaliado, o método estatístico é implantado no sistema da empresa para ser usado on-line para calcular a probabilidade ou classificar como fraude uma determinada operação financeira.

A fim de auxiliar empresas a diminuír o risco de sofrer esse tipo de golpe, pesquisadores do Centro de Ciências Matemáticas Aplicadas à Indústria (CeMEAI) – um dos Centros de Pesquisa, Inovação e Difusão (CEPIDs) apoiados pela FAPESP – estão desenvolvendo modelos estatísticos para detecção e prevenção de fraudes em operações financeiras.