-
HOUSTON, TX.- Technologies for removing carbon from the atmosphere keep improving, but solutions for what to do with the carbon once it’s captured are harder to come by.
The lab of Rice University materials scientist Pulickel Ajayan and collaborators developed a way to wrest the carbon from carbon dioxide and affix it to hydrogen atoms, forming methane ⎯ a valuable fuel and industrial feedstock. According to the study published in Advanced Materials, the method relies on electrolysis [...]
-
2023 OCT 1 (VerticalNews) -- By a News Reporter-Staff News Editor at VerticalNews Health -- Acetone is an essential chemical industry input and is used in the manufacturing of a wide array of products, such as adhesives, antibiotics, electronic components, solvents and removers, inks and vitamins, among others. Its production is complex and hazardous. To simplify the process and make it safer and cheaper, researchers in Brazil and Germany have developed an innovative method that uses only light [...]
-
Technologies for removing carbon from the atmosphere keep improving, but solutions for what to do with the carbon once it's captured are harder to come by.
The lab of Rice University materials scientist Pulickel Ajayan and collaborators developed a way to wrest the carbon from carbon dioxide and affix it to hydrogen atoms, forming methane ⎯ a valuable fuel and industrial feedstock. According to the study published in Advanced Materials , the method relies on electrolysis and catalysts [...]
-
Carbon capture technologies have been advancing steadily, but the challenge of finding effective uses for captured carbon remains.
Researchers at Rice University, led by materials scientist Pulickel Ajayan, have made progress in this area by developing a method to extract carbon from carbon dioxide and bind it to hydrogen atoms, resulting in the formation of methane.
Methane is a valuable resource used as both a fuel and an industrial feedstock. Their innovative approach, outlined in [...]
-
The lab of Rice University materials scientist Pulickel Ajayan and collaborators developed a way to wrest the carbon from carbon dioxide and affix it to hydrogen atoms, forming methane ⎯ a valuable fuel and industrial feedstock. According to the study published in Advanced Materials, the method relies on electrolysis and catalysts developed by grafting isolated copper atoms on two-dimensional polymer templates.
“Electricity-driven carbon dioxide conversion can produce a large array [...]
-
The lab of Rice University materials scientist Pulickel Ajayan and collaborators developed a way to wrest the carbon from carbon dioxide and affix it to hydrogen atoms, forming methane ⎯ a valuable fuel and industrial feedstock. According to the study published in Advanced Materials, the method relies on electrolysis and catalysts developed by grafting isolated copper atoms on two-dimensional polymer templates.
“Electricity-driven carbon dioxide conversion can produce a large array [...]
-
The lab of Rice University materials scientist Pulickel Ajayan and collaborators developed a way to wrest the carbon from carbon dioxide and affix it to hydrogen atoms, forming methane ⎯ a valuable fuel and industrial feedstock. According to the study published in Advanced Materials, the method relies on electrolysis and catalysts developed by grafting isolated copper atoms on two-dimensional polymer templates.
“Electricity-driven carbon dioxide conversion can produce a large array [...]
-
According to the study published in Advanced Materials, the method relies on electrolysis and catalysts developed by grafting isolated copper atoms on two-dimensional polymer templates.
“Electricity-driven carbon dioxide conversion can produce a large array of industrial fuels and feedstocks via different pathways,” said Soumyabrata Roy, a research scientist in the lab of Rice University materials scientist Pulickel Ajayan and the study’s lead author. “However, carbon [...]
-
The lab of Rice University materials scientist Pulickel Ajayan and collaborators developed a way to wrest the carbon from carbon dioxide and affix it to hydrogen atoms, forming methane ⎯ a valuable fuel and industrial feedstock. According to the study published in Advanced Materials, the method relies on electrolysis and catalysts developed by grafting isolated copper atoms on two-dimensional polymer templates.
“Electricity-driven carbon dioxide conversion can produce a large array [...]
-
Technologies for removing carbon from the atmosphere keep improving, but solutions for what to do with the carbon once it’s captured are harder to come by.
The lab of Rice University materials scientist Pulickel Ajayan and collaborators developed a way to wrest the carbon from carbon dioxide and affix it to hydrogen atoms, forming methane ⎯ a valuable fuel and industrial feedstock. According to the study published in Advanced Materials, the method relies [...]