Notícia

Direto da Ciência

O papel dos gases na evolução das galáxias

Publicado em 04 janeiro 2017

Por Peter Moon, da Agência FAPESP

Um dos temas mais fascinantes da cosmologia trata do estudo da evolução das galáxias. O objetivo é compreender como as nuvens primordiais de gás, no Universo recém-nascido, condensaram-se até formar estrelas e galáxias – e como estas evoluíram até se tornar espirais magníficas como a Via Láctea.

Um trabalho de astrofísicos brasileiros e espanhóis, publicado no Monthly Notices of the Royal Astronomical Society, procurou estimar como, ao longo de bilhões de anos, processou-se a queda do gás interestelar das regiões externas do disco em espiral em direção ao núcleo galáctico, atraído por sua tremenda força gravitacional.

Descobrir qual a taxa da queda do gás interestelar no tempo e no espaço é fundamental para saber a razão de formação de estrelas – pois é daquele gás que elas são feitas. Ou seja, quanto mais gás cai através do disco, mais estrelas se formam e mais brilhante se torna a galáxia.

Mas há um problema. Os instrumentos básicos dos astrônomos para estudar a evolução galáctica são os observatórios. Só que, salvo raras exceções, a tecnologia atual não permite a observação de galáxias quando o Universo era jovem, ou seja, quando tinha metade da idade atual, que é de aproximadamente 13,8 bilhões de anos.

“A imagem é muito tênue, difusa, de baixa resolução. Isso é problemático, principalmente quando se sabe que a primeira metade da vida do Universo foi o período mais dinâmico na evolução das galáxias”, disse Oscar Cavichia, professor do Instituto de Física e Química da Universidade Federal de Itajubá, um dos autores do estudo.

Para tentar entender como eram as galáxias quando jovens, os pesquisadores usaram o cluster computacional Alphacrucis, instalado no Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) da Universidade de São Paulo (USP).

Trata-se de um dos maiores aglomerados de processadores (são 192 servidores que agregam 2.304 processadores) unicamente dedicados ao estudo da Astronomia. Inaugurado em 2012, o Alphacrucis é um dos maiores supercomputadores do Brasil e foi adquirido com apoio da FAPESP.

“Fizemos simulações de 144 modelos diferentes de queda de gás. Eles variavam, por exemplo, de acordo com a massa e o tamanho da galáxias. A potência computacional do Alphacrucis permitiu que realizássemos todas as simulações ao mesmo tempo, em vez de separadamente, o que economizou muito tempo e acelerou o trabalho”, disse Cavichia.

Foram feitas simulações com galáxias espirais hipotéticas de três tamanhos. Médias, como a vizinha Triângulo (M33), que tem 40 bilhões de estrelas. Grandes, como a Via Láctea, com 400 bilhões de estrelas. E gigantes, como a vizinha mais próxima, Andrômeda (M31), com 1 trilhão de estrelas.

As simulações envolveram a queda do gás naqueles três tipos de galáxias a partir da sua formação inicial, quando o Universo contava apenas 1 bilhão de anos (redshift 6), e prosseguiram ao longo do tempo para estimar o que acontecia quando o Universo tinha 1,5 bilhão de anos (redshift 4), 3 bilhões (redshift 2), 6 bilhões (redshift 1) e 9 bilhões de anos (redshift 0,5). Redshift, ou “desvio para o vermelho”, é a alteração na forma como a frequência das ondas de luz é observada em função da velocidade relativa entre a fonte emissora e o receptor.

Também se procurou analisar a variação da queda do gás a partir da distância que ele se encontrava do núcleo galáctico, sob argumento de que quanto mais perto do núcleo maior é a gravidade e mais rápida a queda. Por outro lado, quanto mais longe do núcleo, menor é a gravidade e mais lenta a queda.

“A hipótese do trabalho era de que as galáxias de maior massa se formariam mais rapidamente do que as de menor massa, pois quanto maior a massa da galáxia, maior é a sua força gravitacional”, disse Cavichia.

“Da mesma forma, nossa hipótese sugeria que o gás deveria cair mais rapidamente nas partes internas da galáxia do que nas externas”, disse o pesquisador que teve bolsas de mestrado, doutorado e pós-doutorado da FAPESP.

Gases em queda

O resultado das simulações foi na direção do que os astrofísicos esperavam, mas trouxe uma surpresa. “A queda do gás é mais ou menos constante, com exceção das regiões centrais”, contou Cavichia.

De fato, quanto mais próximo do núcleo da galáxia está o gás, mais acelerada é a sua queda. E, conforme teorizado, o gás cai de forma mais lenta nas galáxias de menor massa.

Mas isso não quer dizer que as galáxias pequenas se formaram mais lentamente do que as grandes – e as grandes, por sua vez, mais devagar do que as gigantes. “O que a simulação revelou foi que todas as galáxias, tanto gigantes quanto grandes e pequenas, capturam gás a uma taxa muito similiar à medida que o tempo passa”, explicou Cavichia.

A maior parte do gás interestelar disponível para a formação de novas estrelas já teria caído quando o Universo completou 9 bilhões de anos, o que está de acordo com as observações astronômicas.

O passo atual dessa pesquisa é estudar a abundância química de elementos, como por exemplo o oxigênio, nos discos das galáxias simuladas. O objetivo é determinar a quantidade correspondente de cada elemento químico no gás presente nos discos formados e avaliar se a similaridade observada na taxa de queda de gás para galáxias de diferentes massas tem algum reflexo na distribuição dos elementos químicos ao longo do tempo nestas galáxias.

O artigo The role of gas infall in the evolution of disc galaxies (doi: 10.1093/mnras/stw1723), de Mercedes Mollá, Ángeles I. Díaz, Brad K. Gibson, Oscar Cavichia e Ángel-R. López-Sánchez, pode ser lido por assinantes em https://mnras.oxfordjournals.org/content/early/2016/07/18/mnras.stw1723?related-urls=yes&legid=mnras;stw1723v1.