Long Room (EUA)

Novel formulation permits use of toxin from rattlesnake venom to treat chronic pain

Publicado em 14 fevereiro 2020

Crotoxin, extracted from the venom of the South American rattlesnake Crotalus durissus terrificus, has been studied for almost a century for its analgesic, anti-inflammatory and antitumor activities and as an even more powerful muscle paralyzer than botulinum toxin. However, the toxicity of crotoxin limits its medicinal use.

A new study, published by Brazilian researchers in the journal Toxins, shows that crotoxin's therapeutic effects can be enhanced and its toxicity reduced when it is encapsulated in nanostructured SBA-15 silica, a material originally developed for use in vaccine formulations.

Study - Aegis - Brazil - National - Science

The study was conducted under the aegis of Brazil's National Science and Technology Institute (INCT) on Toxins, one of the INCTs supported by FAPESP (São Paulo Research Foundation) in São Paulo State in partnership with the National Council for Scientific and Technological Development (CNPq), an agency of the Brazilian government. The INCT's principal investigator is Osvaldo Augusto Sant'Anna.

The study was part of the doctoral research of Morena Brazil Sant'Anna, whose thesis advisor is Gisele Picolo. Picolo herself was the principal investigator for a project on the same topic. Researchers Flavia Souza Ribeiro Lopes and Louise Faggionato Kimura participated in the study, which was performed at Butantan Institute in São Paulo.

Osvaldo - Sant'Anna - Investigator - Project - Butantan

Osvaldo Sant'Anna is the principal investigator for a Thematic Project at Butantan Institute to study mesoporous silica as a vaccine adjuvant in collaboration with Márcia Fantini, a professor at the University of São Paulo's Physics Institute (IF-USP). An adjuvant is an agent used in conjunction with a vaccine antigen to augment the host's antigen-specific immune response.

"People who respond badly to vaccines usually have macrophages that catabolize the antigen very quickly, so there isn't time for their lymphocytes to induce a complete response in terms of producing antibodies," Osvaldo Sant'Anna told Agência FAPESP. "Research has shown that nanostructured silica slows the macrophages down."

(Excerpt) Read more at: