Notícia

Ciclo Vivo

Material cerâmico converte energia solar em combustível veicular

Publicado em 26 novembro 2013

Por José Tadeu Arantes, da Agência FAPESP

Converter energia solar em combustível que pode ser estocado e disponibilizado para o abastecimento de veículos já é realidade, pelo menos em laboratório. O experimento, realizado por Sossina Haile, do California Institute of Technology (Caltech), nos Estados Unidos, abre uma nova via para a produção sustentável de energia – um dos maiores desafios da atualidade.

Professora de Ciência dos Materiais e Engenharia Química no Caltech, Sossina apresentou o relato de seu experimento na 6ª Conferência Internacional em Eletrocerâmica, realizada no último mês em João Pessoa, na Paraíba.

“Para realizar a conversão de energia, utilizamos um material cerâmico, o óxido de cério (CeO2)”, disse Sossina à Agência FAPESP, nos bastidores da conferência. “Aquecido a altas temperaturas, ele libera oxigênio, sem perder sua estrutura. Isso é pura termodinâmica: manutenção do estado de equilíbrio. Resfriado, volta a absorver oxigênio. Se o resfriamento ocorrer em presença de vapor de água ou gás carbônico, o oxigênio será retirado das moléculas de uma ou outra dessas substâncias, e a reoxidação resultará na liberação de hidrogênio, em um caso, ou de monóxido de carbono, no outro – ambos com grande potencial como combustíveis.”

Para aquecer o material, a professora Haile e seus colaboradores utilizaram um reator que consiste, de forma geral, em uma cavidade termicamente isolada, cuja tampa, de cristal de quartzo, concentra a radiação solar. O óxido de cério, formando uma peça única e porosa, reveste internamente a cavidade.

O oxigênio liberado após o aquecimento flui por uma saída no fundo do recipiente. E os gases (H2O ou CO2), que resfriam o óxido de cério, entram radialmente na cavidade, atravessando os poros do material. Pela mesma porta de saída, escapam o hidrogênio ou o monóxido de carbono, ejetados após a reoxidação [veja a figura abaixo].

“Uma pergunta específica que fizemos foi: como modificar o material de modo a aumentar a eficiência do processo e operar em temperaturas mais baixas?”, contou ela. A pergunta é muito relevante do ponto de vista tecnológico, pois a diminuição da temperatura de redução do óxido favorece bastante a construção do reator. “Verificamos que, agregando zircônio ao óxido de cério, é possível liberar o oxigênio com temperaturas menores. Em vez de operar a 1600 ou 1500 graus Celsius, é possível operar a 1450 ou 1350 graus – o que é muito vantajoso.”

“O zircônio possibilita baixar a temperatura porque torna a liberação de oxigênio da estrutura mais fácil do ponto de vista termodinâmico. Por outro lado, a cinética da reoxidação posterior fica mais lenta”, ponderou a pesquisadora. Foram realizados, então, vários testes, de modo a chegar à porcentagem ótima de zircônio para favorecer tanto a temperatura quanto a cinética. “Constatamos que com um acréscimo de zircônio da ordem de 10% a 20% é possível atender a ambas expectativas”, afirmou.

Fonte: Agência Fapesp