Notícia

Portal São José dos Campos

Laboratório de bolso: Aumento da eficiência de laser aleatório abre caminho para a fabricação de microchips de baixo custo para exames médicos

Publicado em 22 fevereiro 2017

Quebrar recordes de eficiência energética na geração de feixes de laser está se tornando uma rotina para Niklaus Wetter, físico suíço que trabalha no Brasil desde 1988 e há três anos dirige o Centro de Lasers e Aplicações, do Instituto de Pesquisas Energéticas e Nucleares (Ipen), em São Paulo.

Em 2015, Wetter e o físico Alessandro Melo de Ana, da Universidade Nove de Julho, apresentaram na revista Optics Express uma nova configuração de lentes e espelhos para geradores de laser que usam cristais contendo o elemento químico neodímio. O artigo “Influence of pump bandwidth on the efficiency of side-pumped, double-beam mode-controlled lasers: Establishing a new record for Nd:YLiF 4 lasers using VBG” pode ser lido em https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-7-9379.

Com o novo arranjo, o dispositivo, um dos mais utilizados no mundo para fins industriais, médicos e de pesquisa, conseguiu aproveitar 60% da energia depositada em seu cristal para gerar luz laser, superando o recorde anterior de 50% para esse tipo de equipamento.

Agora, com a física brasileira Julia Giehl e o físico alemão Felix Butzbach, ambos ex-alunos do Ipen, e o físico espanhol Ernesto Jimenez-Villar, da Universidade Federal de Pernambuco (UFPE), Wetter conseguiu um avanço ainda maior na eficiência energética de um tipo diferente de laser: o laser randômico ou aleatório, que ganhou a atenção de físicos e engenheiros nos últimos anos por ser de baixo custo e usar dispositivos muito pequenos.

No lugar de um cristal, os equipamentos de laser aleatório produzem uma luz com características do laser convencional a partir de um líquido contendo partículas micro ou nanométricas em suspensão ou de uma mistura de partículas no estado sólido (na forma de um pó). O problema é que a eficiência desse tipo de laser costuma ser baixa. As soluções e misturas de partículas microscópicas convertem em laser no máximo 2% da energia que recebem na forma de luz.

Calculando detalhes de como o laser é gerado e amplificado à medida que a luz é refletida várias vezes pelas partículas, a equipe de Wetter descobriu como elevar a eficiência dessa conversão, que agora chegou a 60%. “Esse resultado é comparável ao dos melhores lasers de estado sólido [convencionais] disponíveis no mercado”, afirma Wetter.

O segredo, descobriram os pesquisadores, é misturar partículas de diferentes tamanhos. Nos experimentos, eles usaram grãos de um cristal com 54 micrômetros de diâmetro e grãos quase 10 vezes menores, de apenas 6 micrômetros. Na mistura, as partículas menores preencheram o espaço entre as maiores criando bolsões que aumentaram localmente em 30% o espalhamento da luz – a cada espalhamento mais energia é incorporada ao laser.

O resultado final é um aumento de 160% na potência do feixe de laser emitido. Esses resultados foram apresentados dia 31 de janeiro na Photonics West 2017, em São Francisco, Estados Unidos, a principal conferência de tecnologia laser no mundo. “Temos o recorde atual”, comemora Wetter.

No Ipen, o físico suíço sempre trabalhou na melhoria de fontes de laser de grande potência e precisão, produzidas em equipamentos que usam cristais de alta pureza e lentes e espelhos com polimento especial. São aparelhos de dezenas de milhares de dólares. Desde 2008, porém, seu laboratório persegue em paralelo outra linha de pesquisa: desenvolver melhorias em lasers aleatórios, cujo custo de produção, Wetter avalia, pode um dia chegar à casa dos centavos.

Sua motivação é o impacto tecnológico que os lasers aleatórios prometem produzir no desenvolvimento de laboratórios biomédicos compactos, portáteis e descartáveis, conhecidos pela expressão em inglês lab on a chip. São cartões feitos de vidro ou plástico que contêm uma espécie de encanamento microscópico: canais e reservatórios com milímetros a micrômetros de espessura que permitem o armazenamento, a passagem e a mistura de volumes ínfimos de líquidos. Os pesquisadores projetam essas redes de canais e reservatórios de forma a ser possível combinar amostras de sangue, saliva ou outros fluidos corporais com os reagentes químicos necessários para realizar exames laboratoriais.

Leia a íntegra da reportagem publicada na revista Pesquisa FAPESP em http://revistapesquisa.fapesp.br/2017/02/13/laboratorio-de-bolso-2/?cat=ciencia.


Fonte: Agência Fapesp