Notícia

The News Qatar (Qatar)

How Exercise Preserves Physical Fitness During Aging (190 notícias)

Publicado em 06 de janeiro de 2023

Tech Explorist (Índia) The Fact News (Índia) ZEE5 (Índia) Ground News (Canadá) Samachar Central (Índia) My Droll (Índia) Jamaica News (Jamaica) TechiLive.in (Índia) News Azi (Índia) ExBulletin (Reino Unido) Prova Education (EUA) Quick News Bit (Índia) Swift Telecast (Índia) NewsContinue (Índia) Lokmat Times (Índia) online Quick Telecast (Índia) Yours Headline (Índia) ThePrint (Índia) Secular Times (Índia) Always First (Índia) Todays Chronic (Índia) Daily Prabhat (Índia) Knowledia (África do Sul) ABC - Academia Brasileira de Ciências A Gazeta News (MS) online Diário da Saúde Espaço Ecológico no Ar Jornal da USP online Planeta online LabNetwork O Sul online Revista Pará+ online Biblioteca FMUSP O Sul ScienceBlog Saber Atualizado One News Page Astratu Ab Notícias News TV Pampa Carlos Mosquera Sortiwa Portal Rio de Janeiro News (Emirados Árabes Unidos) Heilpraxisnet.de (Alemanha) Archynewsy Saúde em Tela The Medical Dispatch Patient Talk Buenos Aires News (Argentina) Agência Brasil China NotiUlti PaperFree News TittlePress (Reino Unido) Rádio Pampa FM 97,5 Health Reporter The Brighter Side of News Portal Bendita Saúde Breaking News Today (Índia) VNExplorer Real Time Índia) Global Technology Damrea EvensWire Singapore Times (Singapura) MedBound Times (EUA) Sky News Newsachieve.com I-ITM Journal Break Journal Break Journal Break India Just Now (Índia) Canadian Trends (Canadá) Times Network Rádio Caiçara 96,7 FM Health News Afpkudos Afpkudos Health Care Today! Health Care Today! OZ1 Job India United Press Rapid Telecast Wrinkles off Chof360 Tadalafilarb Tadalafilarb Tadalafilarb Tadalafilarb TheBengaluruLive (Índia) Art-news.online Jobber Wiki NewToNews CognitiveScNews Filesk2 Indica News (EUA) Efood Teaching New Day Post (EUA) Health Living 101 BeforeTheWow AnyGeekOut SimplifyForum CatchupSearch ZimFocus News - Zimbabwe Focus News (Zimbábue) Senior Health Styles 247 Today News (Índia) Ankittechie (Índia) Fine Radar (Índia) Fine Radar (Índia) IndianNews24x7 (Índia) MA MEDIA 24 (Índia) News Pub (EUA) News Pub (EUA) World News 24x7 (Índia) LifeTimes.news LifeTimes.news LifeTimes.news Top World News Today Samachar News (Índia) Beat Lyzer News of Los Angeles (EUA) News of Los Angeles (EUA) News of Los Angeles (EUA) Dominokirke Dominokirke nfitness.net CNN World Today CNN World Today redneckanese.com Dynamite News (Índia) keltecpeople.com Embratoria News (EUA) Utaham 820 The British Club (Reino Unido) The British Club (Reino Unido) Alpha Male FTS (Austrália) FSB News Service Genesisblocknews My Scifi News abboudmedia Theghana-italynews OGZ Media KSA 110 gif4bbm Ukr Strah Moussys Cezar Clan The Media Coffee tl2creations.com Blog Post News (Índia) NewsAge Pvt. Ltd. (Índia) Nwoow (Índia) finpeciapills Technology Tangle (Índia) hethithot Healthy by Science (Índia) Worldhealth.net Anti-Aging News (EUA) Mais Top News Cthnkj.cn

Summary: Findings reveal a cellular mechanism that helps improve physical fitness through exercise training and identifies one anti-aging intervention that helps delay the declines that occur with natural aging.

Source: Joslin Diabetes Center

Proven to protect against a wide array of diseases, exercise may be the most powerful anti-aging intervention known to science. However, while physical activity can improve health during aging, its beneficial effects inevitably decline. The cellular mechanisms underlying the relationship among exercise, fitness and aging remain poorly understood.  

In a paper published in the Proceedings of the National Academy of Sciences, researchers at Joslin Diabetes Center investigated the role of one cellular mechanism in improving physical fitness by exercise training and identified one anti-aging intervention that delayed the declines that occur with aging in the model organism. Together, the scientists’ findings open the door to new strategies for promoting muscle function during aging.  

“Exercise has been widely employed to improve quality of life and to protect against degenerative diseases, and in humans, a long-term exercise regimen reduces overall mortality,” said co-corresponding author T. Keith Blackwell, MD, PhD, a senior investigator and section head of Islet Cell and Regenerative Biology at Joslin. “Our data identify an essential mediator of exercise responsiveness and an entry point for interventions to maintain muscle function during aging.” 

That essential mediator is the cycle of fragmentation and repair of the mitochondria, the specialized structures, or organelles, inside every cell responsible for producing energy. Mitochondrial function is critical to health, and disruption of mitochondrial dynamics  the cycle of repairing dysfunctional mitochondria and restoring the connectivity among the energy-producing organelles — has been linked to the development and progression of chronic, age-related diseases, such as heart disease and type 2 diabetes.  

“As we perceive that our muscles undergo a pattern of fatigue and restoration after an exercise session, they are undergoing this mitochondrial dynamic cycle,” said Blackwell, who is also acting section head of Immunobiology at Joslin. “In this process, muscles manage the aftermath of the metabolic demand of exercise and restore their functional capability.” 

Blackwell and colleagues — including co-corresponding author Julio Cesar Batista Ferreira, PhD, Institute of Biomedical Sciences, University of Sao Paulo — investigated the role of mitochondrial dynamics during exercise in the model organism C. elegans, a simple, well-studied microscopic worm species frequently used in metabolic and aging research. 

Recording wild type C. elegans worms as they swam or crawled, the investigators observed a typical age-related decline in physical fitness over the animals’ 15 days of adulthood. The scientists also showed a significant and progressive shift toward fragmented and/or disorganized mitochondria in the aging animals. For example, they observed in young worms on day 1 of adulthood, a single bout of exercise induced fatigue after one hour.

The 60-minute session also caused an increase in mitochondrial fragmentation in the animals’ muscle cells, but a period of 24 hours was sufficient to restore both performance and mitochondrial function.  

In older (day 5 and day 10) worms, the animals’ performance did not return to baseline within 24 hours. Likewise, the older animals’ mitochondria underwent a cycle of fragmentation and repair, but the network reorganization that occurred was reduced compared to that of the younger animals. 

“We determined that a single exercise session induces a cycle of fatigue and physical fitness recovery that is paralleled by a cycle of the mitochondrial network rebuilding,” said first author Juliane Cruz Campos, a postdoctoral fellow at Joslin Diabetes Center.

“Aging dampened the extent to which this occurred and induced a parallel decline in physical fitness. That suggested that mitochondrial dynamics might be important for maintaining physical fitness and possibly for physical fitness to be enhanced by a bout of exercise.”  

In a second set of experiments, the scientists allowed wild type worms to swim for one hour per day for 10 consecutive days, starting at the onset of adulthood. The team found that — as in people — the long-term training program significantly improved the animals’ middle-aged fitness at day 10, and mitigated the impairment of mitochondrial dynamics typically seen during aging.  

That essential mediator is the cycle of fragmentation and repair of the mitochondria, the specialized structures, or organelles, inside every cell responsible for producing energy. Image is in the public domain

Finally, the researchers tested known, lifespan-extending interventions for their ability to improve exercise capacity during aging. Worms with increased AMPK — a molecule that is a key regulator of energy during exercise which also promotes remodeling of mitochondrial morphology and metabolism — exhibited improved physical fitness.

They also demonstrated maintenance of, but not enhancement of, exercise performance during aging. Worms engineered to lack AMPK exhibited reduced physical fitness during aging as well as impairment of the recovery cycle. They also did not receive the age-delaying benefits of exercise over the course of the lifespan.  

“An important goal of the aging field is to identify interventions that not only extend lifespan but also enhance health and quality of life,” said Blackwell, who is also a professor of genetics at Harvard Medical School.

“In aging humans a decline in muscle function and exercise tolerance is a major concern that leads to substantial morbidity. Our data point towards potentially fruitful intervention points for forestalling this decline — most likely along with other aspects of aging. It will be of great interest to determine how mitochondrial network plasticity influences physical fitness along with longevity and aging-associated diseases in humans.” 

Additional authors included Takafumi Ogawa of Joslin Diabetes Center; Luiz Henrique Marchesi Bozi (co-first author) and Edward Chouchani of Dana-Farber Cancer Institute; Barbara Krum, Luiz Roberto Grassmann Bechara, Nikolas Dresch Ferreira, Gabriel Santos Arini, Rudá Prestes Albuquerque of University of Sao Paulo; Annika Traa of McGill University; Alexander M. van der Bliek of David Geffen School of Medicine at University of California, Los Angeles; Afshin Beheshti of NASA Ames Research Center; and Jeremy M. Van Raamsdonk of Harvard Medical School.   

Funding: This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grants 2013/07937-8, 2015/22814-5, 2017/16694-2 and 2019/25049-9); Conselho Nacional de Pesquisa e Desenvolvimento – Brasil (CNPq) (grants 303281/2015-4 and 407306/2013-7); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) Finance Code 001 and Instituto Nacional de Ciência e Tecnologia and Centro de Pesquisa e Desenvolvimento de Processos Redox em Biomedicina; National Institutes of Health (NIH) (grants R35 GM122610, R01 AG054215, DK123095, AG071966); the Joslin Diabetes Center (grants P30 DK036836, and R01 GM121756); FAPESP postdoctoral fellowships 2017/16540-5 and 2019/18444-9, and 2016/09611-0 and 2019/07221-9; the American Heart Association Career Development Award (2022/926512); the Claudia Adams Barr Program; the Lavine Family Fund; the Pew Charitable Trust. William B. Mair (Harvard T.H. Chan School of Public Health) and Malene Hansen (Sanford Burnham Prebys Medical Discovery Institute) provided some of the worm strains used in this study. Other strains were provided by the CGC, which is funded by the NIH (P40 OD010440).  

About this aging and exercise research news

Author: Chloe Meck
Source: Joslin Diabetes Center
Contact: Chloe Meck – Joslin Diabetes Center
Image: The image is in the public domain

Original Research: Closed access.
Exercise preserves physical fitness during aging through AMPK and mitochondrial dynamics” by T. Keith Blackwell et al. PNAS


Abstract

Exercise preserves physical fitness during aging through AMPK and mitochondrial dynamics

Exercise is a nonpharmacological intervention that improves health during aging and a valuable tool in the diagnostics of aging-related diseases. In muscle, exercise transiently alters mitochondrial functionality and metabolism. Mitochondrial fission and fusion are critical effectors of mitochondrial plasticity, which allows a fine-tuned regulation of organelle connectiveness, size, and function.

Here we have investigated the role of mitochondrial dynamics during exercise in the model organism Caenorhabditis elegans. We show that in body-wall muscle, a single exercise session induces a cycle of mitochondrial fragmentation followed by fusion after a recovery period, and that daily exercise sessions delay the mitochondrial fragmentation and physical fitness decline that occur with aging.

Maintenance of proper mitochondrial dynamics is essential for physical fitness, its enhancement by exercise training, and exercise-induced remodeling of the proteome. Surprisingly, among the long-lived genotypes we analyzed (isp-1,nuo-6, daf-2, eat-2, and CA-AAK-2), constitutive activation of AMP-activated protein kinase (AMPK) uniquely preserves physical fitness during aging, a benefit that is abolished by impairment of mitochondrial fission or fusion. AMPK is also required for physical fitness to be enhanced by exercise, with our findings together suggesting that exercise may enhance muscle function through AMPK regulation of mitochondrial dynamics.

Our results indicate that mitochondrial connectivity and the mitochondrial dynamics cycle are essential for maintaining physical fitness and exercise responsiveness during aging and suggest that AMPK activation may recapitulate some exercise benefits.

Targeting mechanisms to optimize mitochondrial fission and fusion, as well as AMPK activation, may represent promising strategies for promoting muscle function during aging.