This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:
A study by scientists at the University of São Paulo (USP) and the Federal University of São Carlos (UFSCar) in Brazil proposes a novel perspective on the biological factors that affect these emissions and emphasizes the urgent need for more research on the topic.
There are some 900 soda lakes in the Pantanal. They are shallow and strongly alkaline, with pH levels as high as 11 and concentrations of salts such as carbonates and bicarbonates that directly influence the microbiology of the environment and its diversity of plankton.
An article on the study published in the journal Science of the Total Environment notes the need to include the composition and functions of microbial communities in greenhouse gas emission models in order to be able to analyze these ecosystems more completely and predict how they may react to environmental changes caused by extreme weather and wildfires, for example.
In recent years, the Pantanal has suffered from consecutive extreme droughts and unprecedented waves of wildfires, which peaked at 22,116 in 2020. In the first eight months of 2024, there were 9,167, more than in the full 12 months of each of the previous three years, according to BDQueimadas, a wildfire database run by Brazil's National Space Research Institute (INPE).
The article classifies soda lakes in the Pantanal into three main types based on water chemistry and the microbial communities they contain: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO).
The researchers found that ET lakes emitted the most methane, probably owing to cyanobacterial blooms and decomposing organic matter. Decomposing dead cyanobacteria and the organic…