Resultado, que identifica a origem da divergência nas previsões recentes do momento magnético do múon, pode contribuir para a prospecção de efeitos de nova física, incluindo matéria escura
Momento magnético é a grandeza que quantifica a interação de uma partícula dotada de spin com um campo magnético, como o de um ímã. Assim como a massa e a carga elétrica, o momento magnético é uma das grandezas fundamentais da física. Existe uma diferença entre o valor teórico do momento magnético do múon, uma partícula que pertence à mesma classe do elétron, e os valores obtidos nos experimentos de altas energias, realizados nos aceleradores de partículas. A diferença só aparece na oitava casa decimal, mas vem intrigando os cientistas desde 1948, quando foi descoberta. E não se trata de um detalhe, pois essa diferença pode indicar que o múon interaja com partículas de matéria escura, outros bósons de Higgs ou, até mesmo, que existam forças diferentes das conhecidas envolvidas no processo.
O valor teórico do momento magnético do múon, representado pela letra “g”, obtido a partir da equação de Dirac (formulada pelo físico inglês Paulo Dirac, 1902-1984, Prêmio Nobel de Física de 1933, um dos fundadores da mecânica e da eletrodinâmica quânticas), é igual a 2. Mas sabemos, hoje, que g não é exatamente igual a 2 e, por isso, existe um grande interesse em entender “g-2”, isto é, a diferença entre o valor experimental e o valor previsto pela equação de Dirac. O melhor valor experimental disponível atualmente, obtido com precisão impressionante no Fermilab, o Fermi National Accelerator Laboratory, nos Estados Unidos, e divulgado em agosto de 2023, é 2,00116592059, mais ou menos 0,00000000022. Informações sobre o experimento realizado no Fermilab, chamado “Muon g-2”, podem ser acessados em: https://muon-g-2.fnal.gov/.
“A determinação precisa do momento magnético do múon tornou-se uma questão central de física de partículas, pois a investigação desse intervalo entre os dados experimentais e as previsões da teoria pode nos proporcionar informações que levem à descoberta de algum efeito novo e espetacular”, diz à Agência FAPESP o físico Diogo Boito, professor do Instituto de Física de São Carlos da Universidade de São Paulo (IFSC-USP).
Ele e colaboradores acabam de publicar um estudo a respeito em Physical Review Letter s.
“Nossos resultados foram apresentados em dois importantes eventos internacionais. Primeiro por mim, em um workshop em Madri, na Espanha. Depois por meu colega Maarten Golterman, da San Francisco State University, em um encontro realizado em Berna, na Suíça”, conta Boito.
Esses resultados quantificam e apontam para a origem de uma discrepância entre os dois métodos utilizados nas previsões atuais de g-2. O pesquisador detalha: “Existem atualmente dois métodos para determinar um componente fundamental de g-2. O primeiro baseia-se em dados experimentais. O segundo em simulações computacionais da cromodinâmica quântica (quantum chromodynamics, ou QCD, em inglês), a teoria que estuda as interações fortes entre os quarks. Os dois métodos levam a resultados bastante distintos e isso constitui um grande problema. Sem resolvê-lo, torna-se impossível investigar as contribuições de eventuais partículas exóticas, por exemplo, de novos bósons de Higgs ou de matéria escura, no resultado de g-2”.
O estudo conseguiu explicar tal discrepância. Mas, para entender isso, é preciso dar alguns passos para trás e recomeçar com uma descrição um pouco mais pormenorizada do múon.
O múon é uma partícula que pertence à classe dos léptons – a mesma do elétron. Porém, possui massa muito maior. E, por causa disso, não é estável, sobrevivendo apenas por intervalos de tempo curtíssimos, em contextos de altas energias. Quando interagem entre si, na presença de campos magnéticos, os múons se desconfiguram e reconfiguram, trazendo à presença um grande número de outras partículas: elétrons, pósitrons, bósons W e Z, bósons de Higgs, fótons etc. Assim, nos contextos experimentais, o múon sempre se apresenta acompanhado por miríades de partículas virtuais. São as contribuições dessas partículas que fazem com que o momento magnético efetivo, medido nos experimentos, seja maior do que o momento magnético teórico, igual a 2, calculado pela equação de Dirac.