Notícia

Knowledia (França)

Brazilian researcher proposes universal mechanism for ejection of matter by black holes

Publicado em 10 setembro 2020

Black holes can expel a thousand times more matter than they capture. The mechanism that governs both ejection and capture is the accretion disk, a vast mass of gas and dust spiraling around the black hole at extremely high speeds. The disk is hot and emits light as well as other forms of electromagnetic radiation. Part of the orbiting matter is pulled toward the center and disappears behind the event horizon, the threshold beyond which neither matter nor light can escape. Another, much larger, part is pushed further out by the pressure of the radiation emitted by the disk itself.

Every galaxy is thought to have a supermassive black hole at its center, but not all galaxies have, or still have, accretion disks. Those that do are known as active galaxies, on account of their active galactic nuclei. The traditional model posits two phases in the matter that accumulates in the central region of an active galaxy: a high-speed ionized gas outflow of matter ejected by the nucleus, and slower molecules that may flow into the nucleus.

A new model that integrates the two phases into a single scenario has now been put forward by Daniel May, a postdoctoral researcher in the University of São Paulo's Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG-USP) in Brazil. "We found that the molecular phase, which appears to have completely different dynamics from the ionized phase, is also part of the outflow. This means there's far more matter being blown away from the center, and the active galactic nucleus plays a much more important role in the structuring of the galaxy as a whole," May told Agência FAPESP.

An article on the study by May and collaborators is published in the journal Monthly Notices of the Royal Astronomical Society. The study was supported by FAPESP via a doctoral scholarship and a postdoctoral scholarship awarded to May. João Steiner, Full Professor at IAG-USP and a co-author of the article, supervised May's PhD and postdoc research.

May identified the pattern on the basis of a study of two active galaxies: NGC 1068, which he investigated in 2017, and NGC 4151, which he investigated in 2020. NGC stands for New General Catalogue of Nebulae and Clusters of Stars, established in the late nineteenth century.

"Using a highly meticulous image treatment methodology, we identified the same pattern in two very different galaxies. Most astronomers today are interested…

Read full article