Notícia

Convergência Digital

Brasileiros descobrem como fazer supercondutores em temperaturas mais altas (13 notícias)

Publicado em 28 de julho de 2022

Um trabalho de pesquisadores brasileiros em supercondutores foi matéria de capa da revista Nanoscale: “Strain-induced multigap superconductivity in electrene Mo2N: a first principles study”. O artigo menciona o interesse suscitado pelo tema devido a “possíveis aplicações em dispositivos eletrônicos de próxima geração”.

Uma das linhas de pesquisa sobre o tema está ligada à chamada “temperatura de transição supercondutora” (Tc), abaixo da qual o material se torna supercondutor. E a importância desse tópico é fácil de entender, pelo interesse em se obter supercondutividade em temperaturas cada vez mais altas – isto é, cada vez mais próximas da temperatura ambiente.

“Em estudo anterior, nosso grupo de pesquisa investigou o papel da pressão como variável capaz de modificar a temperatura de transição de um determinado material. No caso de materiais bidimensionais, um processo análogo é obtido pela aplicação de tensões. E foi isso que estudamos agora”, diz o pesquisador Edison Zacarias da Silva, professor titular do Instituto de Física Gleb Wataghin da Universidade Estadual de Campinas (IFGW-Unicamp) e coordenador da pesquisa.

Silva é um dos pesquisadores principais do Projeto Temático “Modelagem computacional da matéria condensada”, apoiado pela FAPESP. A pesquisa, que utilizou o novo computador Ada Lovelace do Centro Nacional de Processamento de Alto Desempenho (Cenapad-SP), sediado na Unicamp, também contou com a colaboração do Centro de Desenvolvimento de Materiais Funcionais (CDMF), um Centro de Pesquisa, Inovação e Difusão (CEPID) da FAPESP.

No estudo, os pesquisadores empregaram simulação computacional para investigar o comportamento supercondutor de uma monocamada de nitreto de dimolibdênio (Mo2N), em função de diferentes temperaturas e tensões aplicadas. A ferramenta matemática utilizada para resolver a estrutura eletrônica do material foi o funcional de densidade.

Um importante achado do estudo é a forte correlação entre as propriedades eletrônicas do material e a tensão aplicada. “Nossa simulação mostrou ainda que a monocamada de Mo2N apresenta a mais alta temperatura de supercondução para essa classe de materiais em pressão ambiente, variando, em função da tensão, de 19,3 kelvin a 24,8 kelvin”, sublinha Silva. Além de Silva e Pereira, participou do estudo o professor Giovani Faccin, da Universidade Federal da Grande Dourados.

O artigo “Strain-induced multigap superconductivity in electrene Mo2N: a first principles study” pode ser acessado em https://doi.org/10.1039/D2NR00395C.

* Com informações da FAPESP