Notícia

Correio da Paraíba

Algoritimos evolutivos

Publicado em 26 agosto 2012

Árvores de Decisão são ferramentas computacionais que conferem às máquinas a capacidade de fazer previsões com base na análise de dados históricos. A técnica pode, por exemplo, auxiliar o diagnóstico médico ou a análise de risco de aplicações financeiras.

Mas, para ter a melhor previsão, é necessário o melhor programa gerador de Árvores de Decisão. Para alcançar esse objetivo, pesquisadores do Instituto de Ciências Matemáticas e de Computação (lCMq da Universidade de , São Paulo (USP), em São Carlos, e do Instituto de Ciência e Tecnologia (lCT) da Universidade Federal de São Paulo (UNIFESP), em São José dos Campos, se inspiraram na n teoria evolucionista de Charles Darwin.

”Desenvolvemos um algoritmo evolutivo, ou seja, que mimetiza o processo de evolução humana para gerar soluções”, disse Rodrigo Coelho Barros, doutorando do Laboratório de Computação Bioinspirada (BioCom) do ICMC e bolsista da FAPESP.

A computação evolutiva, explicou Barros, é uma das várias técnicas bioinspiradas, ou seja, que buscam na natureza soluções para problemas computacionais. “É notável como a natureza encontra soluções para problemas extremamente complicados. Não há dúvidas de que precisamos aprender com ela”, disse Barros.

Segundo Barros, o software desenvolvido em seu doutorado é capaz de criar automaticamente programas geradores de Árvores de Decisão. Para isso, faz cruzamentos aleatórios entre os códigos de programas já existentes gerando “filhos”.

“Esses ‘filhos’ podem eventualmente sofrer mutações e evoluir. Após um tempo, é esperado que os programas de geração de Árvores de Decisão evoluídos sejam cada vez melhores e nosso algoritmo seleciona o melhor de todos”, afirmou Barros.

Mas enquanto o processo de seleção natural na espécie humana leva centenas ou até milhares de anos, na computação dura apenas algumas horas, dependendo do problema a ser resolvido. “Estabelecemos cem gerações como limite do processo evolutivo”, contou Barros.

Fonte: Agência FAPESP